Multiple Choice Questions

Q: 1 U and V are two non-singular matrices of order *n* and *k* is any scalar.

Given below are two statements based on the above information - one labelled Assertion (A) and the other labelled Reason (R). Read the statements carefully and choose the option that correctly describes statements (A) and (R).

Assertion (A) : det(k U) = $k^n \times det(U)$

Reason (R) : If W is a matrix obtained by multiplying any one row or column of V by the scalar k, then det(W) = $k \times det(V)$.

1 Both (A) and (R) are true and (R) is the correct explanation for (A).

2 Both (A) and (R) are true but (R) is not the correct explanation for (A).

3 (A) is true but (R) is false.

4 (A) is false but (R) is true.

Free Response Questions

 $\frac{\mathbf{Q:2}}{\mathbf{C}}$ Show that for any positive integer n, $\begin{vmatrix} (n-1)! & n! \\ -n & n \end{vmatrix} = (n+1)!.$ [1]

(Note: n! denotes factorial n.)

O: 3 Given below is a system of linear equations in three variables.

tx + 3 y - 2z = 1x + 2 y + z = 2- tx + y + 2 z = -1

For what value of t, will the system fail to have a unique solution? Show your work.

Q: 4 P(k, -1), Q(3, -5) and R(6, -1) are vertices of **A**PQR. The lengths of side QR and [2] altitude PS are 5 units and 4 units respectively.

Use determinants to find the value(s) of *k*. Show your work.

$$\begin{array}{c} \underline{\textbf{Q: 5}} \\ \hline \textbf{If A} = \begin{pmatrix} 4 & -8 \\ 12 & 16 \end{pmatrix} \text{ and } \textbf{B} = \begin{pmatrix} -16 & -8 \\ 12 & -4 \end{pmatrix}, \\ \hline \textbf{identify what type of matrix is (Adj A) \times (Adj B).} \end{array}$$

$$\begin{array}{c} \textbf{Show your work.} \end{array}$$

Get More Learning Materials Here : 📕

[2]

 $\frac{\mathbf{Q: 6}}{\mathbf{Consider the matrix X}} \begin{bmatrix} p & -2 & -3 \\ -2 & 2 & 6 \\ 1 & 3 & q \end{bmatrix}, \text{ where } p \text{ and } q \in \mathbf{R}.$

The co-factor of element 6 is (-11) and the minor of element 2 is 0.

Find the values of p and q. Show your work.

Q: 7 Without expanding the determinant, show that \blacktriangle is a perfect square for any integer [5] values of *a*, *b* and *c*.

		$b^2 + c^2$	a^2	a^2
Δ	=	b^2	$c^2 + a^2$	b^2
		c^2	c^2	$a^2 + b^2$

Q: 8 A ball is thrown from a balcony. Its height above the ground after t seconds is given by [5] $h(t) = pt^2 + qt + r$, where p,q, and $r \in \mathbb{R}$, and h(t) is in meters.

Shown below is the trajectory of the ball with its height from the ground at t = 0 s, t = 1 s and t = 5 s.

Solve for p, q and r and find h(t) using the matrix method. Show your work and give valid reasons.

Get More Learning Materials Here :

[3]

Q: 9 A and B are invertible matrices of same order such that:

$$(AB)^{-1} = \frac{1}{48} \begin{bmatrix} 0 & 0 & 16 \\ 0 & 24 & 0 \\ 3 & 0 & 0 \end{bmatrix}$$

and A =
$$\begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Find B. Show your work.

[5]

The table below gives the correct answer for each multiple-choice question in this test.

Q.No	Correct Answers
1	1

Q.No	What to look for	Marks
2	Expands the determinant as:	0.5
	n (n - 1)! + n (n !)	
	Simplifies the above expression as:	
	n! + n(n!) = n!(n + 1) = (n + 1)!	
3	Writes the coefficient matrix and finds its determinant as:	1
	$\begin{vmatrix} t & 3 & -2 \\ 1 & 2 & 1 \\ -t & 1 & 2 \end{vmatrix} = t (3) - 3(2 + t) - 2(1 + 2t) = -4t - 8$	
	Solves the equation -4 t - 8 = 0 for t and writes that for t = (-2), the system fails to have a unique solution.	1
4	Uses QR and PS to find the area of the triangle as 10 sq units. The working may look as follows:	0.5
	$\frac{1}{2} \times 5 \times 4 = 10$	
	Equates the area found to that using determinants as follows:	0.5
	$\begin{array}{c cccc} 1 \\ \frac{1}{2} \\ 3 \\ 6 \\ -1 \\ 1 \\ \end{array} = 10$	
	Expands the above determinant to write the equation as:	0.5
	$\frac{1}{2} \left k(-5+1) + 1 (3-6) + 1(-3+30) \right = 10$ $\left -4k + 24 \right = 20$	
	ן־ ז אד - 20	

Q.No	What to look for	Marks
	Solves the above equation to find the values of k as 1 or 11.	0.5
5	Finds (Adj A) as:	0.5
	$\begin{pmatrix} 16 & 8 \\ -12 & 4 \end{pmatrix}$	
	Finds (Adj B) as:	
	$\begin{pmatrix} -4 & 8 \\ -12 & -16 \end{pmatrix}$	
	Finds the product of (Adj A) and (Adj B) as:	0.5
	$\begin{pmatrix} -160 & 0 \\ 0 & -160 \end{pmatrix}$	
	Identifies the matrix (Adj A) $ imes$ (Adj B) as a scalar matrix.	0.5
	(Award full marks if diagonal matrix is written instead of scalar matrix.)	
6	Frames an equation in <i>p</i> using the co-factor of element 6 as	1
	$A_{23} = (-1)^{2+3} \begin{vmatrix} p & -2 \\ 1 & 3 \end{vmatrix} = -3p - 2 = -11$	
	Solves the above equation to find the value of p as 3.	0.5
	Frames an equation in q using the minor of element 3 as	1
	$M_{22} = \begin{vmatrix} p & -3 \\ 1 & q \end{vmatrix} = \begin{vmatrix} 3 & -3 \\ 1 & q \end{vmatrix} = 3p + 3 = 0$	
	Solves the above equation to find the value of q as (-1).	0.5

Q.No	What to look for	Marks	
7	7 Performs the row operation $R_1 \rightarrow R_1 - R_2 - R_3$ on A to get:		
	$\Delta = \begin{vmatrix} 0 & -2c^2 & -2b^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix}$		
	Takes (-2) common from the first row and performs the row operation $R_3 -> R_3 - R_2$ on A to get:	1	
	$\Delta = (-2) \begin{vmatrix} 0 & c^2 & b^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 - b^2 & -a^2 & a^2 \end{vmatrix}$		
	Performs the row operation $R_2 \rightarrow R_2 - R_1$ on A to get:	1	
	$\Delta = (-2) \begin{vmatrix} 0 & c^2 & b^2 \\ b^2 & a^2 & 0 \\ c^2 - b^2 & -a^2 & a^2 \end{vmatrix}$		
	Performs the row operation $R_3 \rightarrow R_3 + R_2$ on \blacktriangle to get:		
	$\Delta = (-2) \begin{vmatrix} 0 & c^2 & b^2 \\ b^2 & a^2 & 0 \\ c^2 & 0 & a^2 \end{vmatrix}$		

Q.No	What to look for	Marks
	Expands the determinant to get:	1
	Hence concludes that A is a perfect square for any any integer value of a , b and c .	
8	Finds $r = 30$ by substituting $t = 0$ in $h(t)$.	0.5
	Frames the following equations in p and q by substituting $t = 1$ and $t = 5$ respectively:	0.5
	p + q = 7 5 $p + q = 3$	
	Writes the above system of equations in the matrix form using AX = B as: $\begin{bmatrix} 1 & 1 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$ Finds A as -4 (\neq 0). Hence, writes that A ⁻¹ exists and the system has a unique solution. Finds <i>adj</i> A as:	
	$\begin{bmatrix} 1 & -1 \\ -5 & 1 \end{bmatrix}$	
	Finds A ⁻¹ using A and <i>adj</i> A as:	1
	$A^{-1} = \frac{1}{ A } \times \operatorname{adj} A$	
	$=\frac{1}{-4}\begin{bmatrix}1&-1\\-5&1\end{bmatrix}$	

Q.No	What to look for	Marks
	Writes that $X = A^{-1} B$ and finds X as:	1
	[-1] 8]	
	Concludes that $p = -1$ and $q = 8$.	
	Writes $h(t) = -t^2 + 8t + 30$.	0.5
9	Finds B ⁻¹ as (AB) ⁻¹ A as follows:	1.5
	$ \begin{array}{cccc} \frac{1}{48} \begin{bmatrix} 0 & 0 & 16 \\ 0 & 24 & 0 \\ 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \\ = \begin{bmatrix} 0 & 0 & 1 \\ 0 & \frac{-1}{2} & 0 \\ \frac{-1}{8} & 0 & 0 \end{bmatrix} $	
	Finds adj (B ⁻¹) as follows:	1.5
	$adj(B^{-1}) = \begin{bmatrix} 0 & 0 & \frac{-1}{16} \\ 0 & \frac{1}{8} & 0 \\ \frac{1}{2} & 0 & 0 \end{bmatrix}^{T} = \begin{bmatrix} 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{8} & 0 \\ \frac{-1}{16} & 0 & 0 \end{bmatrix}$	
	Finds det (B ⁻¹) as 0 - 0 + 1($\frac{-1}{16}$) = $\frac{-1}{16}$.	1
	Finds the matrix B as follows:	1
	$B = \frac{1}{\frac{-1}{16}} \begin{bmatrix} 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{8} & 0 \\ \frac{-1}{16} & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -8 \\ 0 & -2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	

